173 research outputs found

    Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression

    Get PDF
    Approximately 15% of non-small cell lung cancer cases are associated with a mutation in the epidermal growth factor receptor (EGFR) gene, which plays a critical role in tumor progression. With the goal of treating mutated EGFR-mediated lung cancer, we demonstrate the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system to discriminate between the oncogenic mutant and wild-type EGFR alleles and eliminate the carcinogenic mutant EGFR allele with high accuracy. We targeted an EGFR oncogene harboring a single-nucleotide missense mutation (CTG > CGG) that generates a protospacer-adjacent motif sequence recognized by the CRISPR/Cas9 derived from Streptococcus pyogenes. Co-delivery of Cas9 and an EGFR mutation-specific single-guide RNA via adenovirus resulted in precise disruption at the oncogenic mutation site with high specificity. Furthermore, this CRISPR/Cas9-mediated mutant allele disruption led to significantly enhanced cancer cell killing and reduced tumor size in a xenograft mouse model of human lung cancer. Taken together, these results indicate that targeting an oncogenic mutation using CRISPR/Cas9 offers a powerful surgical strategy to disrupt oncogenic mutations to treat cancers; similar strategies could be used to treat other mutation-associated diseases.

    A Study on ESD Protection Circuit Applying Silicon Controlled Rectifier-Based Stack Technology with High Holding Voltage

    Get PDF
    In this study, an improved Electrostatic Discharge (ESD) protection circuit with low trigger voltage and high holding voltage is proposed. ESD has become a serious problem in the semiconductor process because the semiconductor density has become very high these days. Therefore, much research has been done to prevent ESD. The proposed circuit is a stacked structure of the new unit structure combined by the Zener Triggering (SCR ZTSCR) and the High Holding Voltage SCR (HHVSCR). The simulation results show that the proposed circuit has low trigger voltage and high holding voltage. And the stack technology is applied to adjust the various operating voltage. As the results, the holding voltage is 7.7 V for 2-stack and 10.7 V for 3-stack

    Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures

    Get PDF
    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete

    Breast Cancer Diagnosis Using a Microfluidic Multiplexed Immunohistochemistry Platform

    Get PDF
    BACKGROUND: Biomarkers play a key role in risk assessment, assessing treatment response, and detecting recurrence and the investigation of multiple biomarkers may also prove useful in accurate prediction and prognosis of cancers. Immunohistochemistry (IHC) has been a major diagnostic tool to identify therapeutic biomarkers and to subclassify breast cancer patients. However, there is no suitable IHC platform for multiplex assay toward personalized cancer therapy. Here, we report a microfluidics-based multiplexed IHC (MMIHC) platform that significantly improves IHC performance in reduction of time and tissue consumption, quantification, consistency, sensitivity, specificity and cost-effectiveness. METHODOLOGY/PRINCIPAL FINDINGS: By creating a simple and robust interface between the device and human breast tissue samples, we not only applied conventional thin-section tissues into on-chip without any additional modification process, but also attained perfect fluid control for various solutions, without any leakage, bubble formation, or cross-contamination. Four biomarkers, estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR) and Ki-67, were examined simultaneously on breast cancer cells and human breast cancer tissues. The MMIHC method improved immunoreaction, reducing time and reagent consumption. Moreover, it showed the availability of semi-quantitative analysis by comparing Western blot. Concordance study proved strong consensus between conventional whole-section analysis and MMIHC (n = 105, lowest Kendall's coefficient of concordance, 0.90). To demonstrate the suitability of MMIHC for scarce samples, it was also applied successfully to tissues from needle biopsies. CONCLUSIONS/SIGNIFICANCE: The microfluidic system, for the first time, was successfully applied to human clinical tissue samples and histopathological diagnosis was realized for breast cancers. Our results showing substantial agreement indicate that several cancer-related proteins can be simultaneously investigated on a single tumor section, giving clear advantages and technical advances over standard immunohistochemical method. This novel concept will enable histopathological diagnosis using numerous specific biomarkers at a time even for small-sized specimens, thus facilitating the individualization of cancer therapy

    Negative regulation of floral transition in Arabidopsis by HOS15-PWR-HDA9 complex

    Get PDF
    Arabidopsis HOS15/PWR/HDA9 repressor complex, which is similar to the TBL1/NcoR1/HDAC complex in animals, plays a well-known role in epigenetic regulation. PWR and HDA9 have been reported to interact with each other and modulate the flowering time by repressing AGL19 expression, whereas HOS15 and HDA9, together with the photoperiodic evening complex, regulate flowering time through repression of GI transcription. However, the role of the HOS15/PWR/HDA9 core repressor complex as a functional unit in the regulation of flowering time is yet to be explored. In this study, we reported that the loss-of-function hos15-2/pwr/hda9 triple mutant accumulates higher transcript levels of AGL19 and exhibits an early flowering phenotype similar to those of hos15, pwr, and hda9 single mutants. Interestingly, the accumulation of HOS15 in the nucleus was drastically reduced in pwr and hda9 mutants. As a result, HOS15 could not perform its role in histone deacetylation or interaction with H3 in the nucleus. Furthermore, HOS15 is also associated with the same region of the AGL19 promoter known for PWR-HDA9 binding. The acetylation level of the AGL19 promoter was increased in the hos15-2 mutant, similar to the pwr and hda9 mutants. Therefore, our findings reveal that the HOS15/PWR/HDA9 repressor complex deacetylates the promoter region of AGL19, thereby negatively regulating AGL19 transcription, which leads to early flowering in Arabidopsis

    Defining the Optimal Time of Adaptive Replanning in Prostate Cancer Patients with Weight Change during Volumetric Arc Radiotherapy: A Dosimetric and Mathematical Analysis Using the Gamma Index

    Get PDF
    We evaluated the changes in the dose distribution of radiation during volumetric arc radiotherapy (VMAT), to determine the right time for adaptive replanning in prostate cancer patients with progressive weight (WT) changes. Five prostate cancer patients treated with VMAT were selected for dosimetric analysis. On the original computed tomography images, nine artificial body contours were created to reflect progressive WT changes. Combined with three different photon energies (6, 10, and 15-MV), 27 comparable virtual VMAT plans were created per patient. The dosimetric analysis included evaluation of target coverage (D95%,Dmax), conformity index, homogeneity index, and organs at risk doses. The dose differences among the plans were determined using the gamma index analysis and were compared with the dosimetric analysis. Mean D95% became lower than 98% when body contour expanded by 2.0 cm or more and Dmax became higher than 107% when body contour contracted by 1.5 cm or more in 10-MV plans. This cut-off values correlated well with gamma index analysis results. Adaptive replanning should, therefore, be considered if the depth of body contour becomes 1.5 cm smaller (WT loss) or 2.0 cm larger (WT gain) in patients treated by VMAT with 10-MV photons

    Randomized Trial of Stents Versus Bypass Surgery for Left Main Coronary Artery Disease 5-Year Outcomes of the PRECOMBAT Study

    Get PDF
    AbstractBackgroundIn a previous randomized trial, we found that percutaneous coronary intervention (PCI) was not inferior to coronary artery bypass grafting (CABG) for the treatment of unprotected left main coronary artery stenosis at 1 year.ObjectivesThis study sought to determine the 5-year outcomes of PCI compared with CABG for the treatment of unprotected left main coronary artery stenosis.MethodsWe randomly assigned 600 patients with unprotected left main coronary artery stenosis to undergo PCI with a sirolimus-eluting stent (n = 300) or CABG (n = 300). The primary endpoint was a major adverse cardiac or cerebrovascular event (MACCE: a composite of death from any cause, myocardial infarction, stroke, or ischemia-driven target vessel revascularization) and compared on an intention-to-treat basis.ResultsAt 5 years, MACCE occurred in 52 patients in the PCI group and 42 patients in the CABG group (cumulative event rates of 17.5% and 14.3%, respectively; hazard ratio [HR]: 1.27; 95% confidence interval [CI]: 0.84 to 1.90; p = 0.26). The 2 groups did not differ significantly in terms of death from any cause, myocardial infarction, or stroke as well as their composite (8.4% and 9.6%; HR, 0.89; 95% CI, 0.52 to 1.52; p = 0.66). Ischemia-driven target vessel revascularization occurred more frequently in the PCI group than in the CABG group (11.4% and 5.5%, respectively; HR: 2.11; 95% CI: 1.16 to 3.84; p = 0.012).ConclusionsDuring 5 years of follow-up, our study did not show significant difference regarding the rate of MACCE between patients who underwent PCI with a sirolimus-eluting stent and those who underwent CABG. However, considering the limited power of our study, our results should be interpreted with caution. (Bypass Surgery Versus Angioplasty Using Sirolimus-Eluting Stent in Patients With Left Main Coronary Artery Disease [PRECOMBAT]; NCT00422968

    Current Trends in the Epidemiological and Pathological Characteristics of Gastrointestinal Stromal Tumors in Korea, 2003-2004

    Get PDF
    Despite remarkable progress in understanding and treating gastrointestinal stromal tumors (GISTs) during the past two decades, the pathological characteristics of GISTs have not been made clear yet. Furthermore, concrete diagnostic criteria of malignant GISTs are still uncertain. We collected pathology reports of 1,227 GISTs from 38 hospitals in Korea between 2003 and 2004 and evaluated the efficacy of the NIH and AFIP classification schemes as well as the prognostic factors among pathologic findings. The incidence of GISTs in Korea is about 1.6 to 2.2 patients per 100,000. Extra-gastrointestinal GISTs (10.1%) are more common in Korea than in Western countries. In univariate analysis, gender, age, tumor location, size, mitosis, tumor necrosis, vascular and mucosal invasions, histologic type, CD34 and s-100 protein expression, and classifications by the NIH and AFIP criteria were found to be significantly correlated with patient's survival. However, the primary tumor location, stage and classification of the AFIP criteria were prognostically significant in predicting patient's survival in multivariate analysis. The GIST classification based on original tumor location, size, and mitosis is more efficient than the NIH criteria in predicting patient's survival, but the mechanism still needs to be clarified through future studies
    corecore